AAAAAA
This commit is contained in:
@@ -2,4 +2,4 @@ sympy
|
||||
numpy
|
||||
matplotlib
|
||||
pyqt6
|
||||
scipy
|
||||
scipy
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
sympy
|
||||
numpy
|
||||
scipy
|
||||
scipy
|
||||
pyqt6
|
||||
|
||||
100
Л3-В6/Программа/src/algorithm.py
Normal file
100
Л3-В6/Программа/src/algorithm.py
Normal file
@@ -0,0 +1,100 @@
|
||||
from typing import List, Tuple
|
||||
import numpy as np
|
||||
|
||||
|
||||
def det(matrix: np.matrix):
|
||||
if matrix.shape[0] != matrix.shape[1]:
|
||||
return None
|
||||
if matrix.shape[0] == 1:
|
||||
return matrix[0, 0]
|
||||
|
||||
return _det(matrix)
|
||||
|
||||
|
||||
def _det(matrix: np.matrix):
|
||||
matrix, swaps = triangle(np.copy(matrix))
|
||||
if matrix is None:
|
||||
return 0.0
|
||||
|
||||
n = matrix.shape[0]
|
||||
determinant = (-1) ** swaps
|
||||
for i in range(n):
|
||||
determinant *= matrix[i, i]
|
||||
|
||||
return determinant
|
||||
|
||||
|
||||
def triangle(matrix: np.matrix):
|
||||
swaps = 0
|
||||
n = matrix.shape[0]
|
||||
|
||||
for i in range(n):
|
||||
if matrix[i, i] == 0:
|
||||
if not swap_first_non_zero(matrix, i)[0]:
|
||||
return None, swaps
|
||||
swaps += 1
|
||||
|
||||
for j in range(i + 1, n):
|
||||
matrix[j, :] = matrix[j, :] - matrix[i, :] * (matrix[j, i] / matrix[i, i])
|
||||
|
||||
return matrix, swaps
|
||||
|
||||
|
||||
def swap_first_non_zero(matrix, i):
|
||||
n = matrix.shape[0]
|
||||
for j in range(i, n):
|
||||
if matrix[j, i] != 0:
|
||||
if i != j:
|
||||
matrix[[i, j], :] = matrix[[j, i], :]
|
||||
return True, j
|
||||
return False, -1
|
||||
|
||||
|
||||
def swap_max_row(matrix, i):
|
||||
n = matrix.shape[0]
|
||||
col_max = abs(matrix[i, i])
|
||||
max_j = i
|
||||
for j in range(i, n):
|
||||
if abs(matrix[j, i]) > col_max:
|
||||
col_max = abs(matrix[j, i])
|
||||
max_j = j
|
||||
|
||||
if i != max_j:
|
||||
matrix[[i, max_j], :] = matrix[[max_j, i], :]
|
||||
|
||||
return max_j
|
||||
|
||||
|
||||
def swap_max_column(matrix, i):
|
||||
n = matrix.shape[0]
|
||||
row_max = abs(matrix[i, i])
|
||||
max_j = i
|
||||
for j in range(i, n):
|
||||
if abs(matrix[i, j]) > row_max and abs(matrix[i, i]) - abs(matrix[j, j]) > 0.0:
|
||||
row_max = abs(matrix[i, j])
|
||||
max_j = j
|
||||
|
||||
if i != max_j:
|
||||
matrix[:, [i, max_j]] = matrix[:, [max_j, i]]
|
||||
|
||||
return max_j
|
||||
|
||||
|
||||
def norm(matrix: np.matrix):
|
||||
n = matrix.shape[0]
|
||||
m = matrix.shape[1]
|
||||
|
||||
m_norm = float("-inf")
|
||||
for i in range(n):
|
||||
s = 0.0
|
||||
for j in range(m):
|
||||
s += abs(matrix[i, j])
|
||||
|
||||
if s > m_norm:
|
||||
m_norm = s
|
||||
|
||||
return m_norm
|
||||
|
||||
|
||||
def cond(matrix: np.matrix):
|
||||
return norm(matrix) * norm(np.linalg.inv(matrix))
|
||||
@@ -1,68 +1,63 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def det(matrix: np.matrix):
|
||||
if matrix.shape[0] != matrix.shape[1]:
|
||||
return None
|
||||
if matrix.shape[0] == 1:
|
||||
return matrix[0, 0]
|
||||
|
||||
return _det(matrix)
|
||||
|
||||
|
||||
def _det(matrix: np.matrix):
|
||||
matrix, swaps = triangle(np.copy(matrix))
|
||||
if matrix is None:
|
||||
return 0.0
|
||||
|
||||
n = matrix.shape[0]
|
||||
determinant = (-1) ** swaps
|
||||
for i in range(n):
|
||||
determinant *= matrix[i, i]
|
||||
|
||||
return determinant
|
||||
|
||||
|
||||
def triangle(matrix: np.matrix):
|
||||
swaps = 0
|
||||
n = matrix.shape[0]
|
||||
|
||||
for i in range(n):
|
||||
if matrix[i, i] == 0:
|
||||
if not swap_first_non_zero(matrix, i):
|
||||
return None, swaps
|
||||
swaps += 1
|
||||
|
||||
for j in range(i + 1, n):
|
||||
matrix[j, :] = matrix[j, :] - matrix[i, :] * (matrix[j, i] / matrix[i, i])
|
||||
|
||||
return matrix, swaps
|
||||
|
||||
|
||||
def swap_first_non_zero(matrix, i):
|
||||
n = matrix.shape[0]
|
||||
for j in range(i + 1, n):
|
||||
if matrix[j, i] != 0:
|
||||
matrix[[i, j], :] = matrix[[j, i], :]
|
||||
return True
|
||||
return False
|
||||
|
||||
import solution
|
||||
|
||||
A = np.matrix(
|
||||
[
|
||||
[4.3, -12.1, 23.2, -14.1],
|
||||
[2.4, -4.4, 3.5, 5.5],
|
||||
[5.4, 8.3, -7.4, 12.7],
|
||||
[5.4, 8.3, -7.4, -12.7],
|
||||
[6.3, -7.6, 1.34, 3.7],
|
||||
],
|
||||
dtype=np.float64,
|
||||
)
|
||||
|
||||
print(det(A))
|
||||
print(np.linalg.det(A))
|
||||
B = np.matrix([[15.5, 2.5, 8.6, 12.1]], dtype=np.float64).T
|
||||
|
||||
print(A)
|
||||
# A = np.matrix(
|
||||
# [
|
||||
# [14.4, -5.3, 14.3, -12.7],
|
||||
# [23.4, -14.2, -5.4, 2.1],
|
||||
# [6.3, -13.2, -6.5, 14.3],
|
||||
# [5.6, 8.8, -6.7, -23.8],
|
||||
# ],
|
||||
# dtype=np.float64,
|
||||
# )
|
||||
|
||||
B = np.matrix([[-14.4, 6.6, 9.4, 7.3]], dtype=np.float64).T
|
||||
# B = np.matrix([[-14.4, 6.6, 9.4, 7.3]], dtype=np.float64).T
|
||||
|
||||
# X = np.linalg.inv(A) * B
|
||||
|
||||
# A = np.matrix(
|
||||
# [
|
||||
# [-1, 11, -1, 3],
|
||||
# [10, -1, 2, 0],
|
||||
# [2, -1, 10, -1],
|
||||
# [0, 3, -1, 8],
|
||||
# ],
|
||||
# dtype=np.float64,
|
||||
# )
|
||||
|
||||
# B = np.matrix([[25, 6, -11, 15]], dtype=np.float64).T
|
||||
|
||||
# print(algorithm.det(A))
|
||||
# print(np.linalg.det(A))
|
||||
|
||||
# print(algorithm.norm(A))
|
||||
# print(np.linalg.norm(A, ord=float("inf")))
|
||||
|
||||
# print(algorithm.cond(A))
|
||||
# print(np.linalg.cond(A, p=float("inf")))
|
||||
|
||||
# koef = np.matrix([[1 / 10000000000000, 1/100000000000, 1, 1]], dtype=np.float64)
|
||||
# for i in range(A.shape[0]):
|
||||
# A[i, :] *= koef[0, i]
|
||||
# B[i, :] *= koef[0, i]
|
||||
|
||||
# print(A)
|
||||
# print(algorithm.cond(A))
|
||||
# print(B)
|
||||
|
||||
X = np.linalg.inv(A) * B
|
||||
|
||||
print(solution.iterative_method(A, B))
|
||||
print(X)
|
||||
|
||||
65
Л3-В6/Программа/src/solution.py
Normal file
65
Л3-В6/Программа/src/solution.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import algorithm
|
||||
import numpy as np
|
||||
|
||||
|
||||
def iterative_method(
|
||||
A: np.matrix, B: np.matrix, eps: float = 0.0001, max_iterations: int = 10000
|
||||
) -> np.matrix:
|
||||
if A.shape[0] != A.shape[1] or A.shape[0] != B.shape[0] or B.shape[1] != 1:
|
||||
return None
|
||||
|
||||
n = A.shape[0]
|
||||
|
||||
alpha = np.copy(A)
|
||||
beta = np.copy(B)
|
||||
|
||||
for i in range(n):
|
||||
j = algorithm.swap_max_row(alpha, i)
|
||||
|
||||
if alpha[i, i] == 0:
|
||||
return None
|
||||
|
||||
beta[[i, j], :] = beta[[j, i], :]
|
||||
|
||||
swaps = []
|
||||
for i in range(n):
|
||||
j = algorithm.swap_max_column(alpha, i)
|
||||
|
||||
if alpha[i, i] == 0:
|
||||
return None
|
||||
|
||||
swaps.append((i, j))
|
||||
|
||||
for i in range(n):
|
||||
beta[i, 0] = beta[i, 0] / alpha[i, i]
|
||||
|
||||
X = np.copy(beta)
|
||||
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
if i == j:
|
||||
continue
|
||||
|
||||
alpha[i, j] = -(alpha[i, j] / alpha[i, i])
|
||||
|
||||
alpha[i, i] = 0
|
||||
|
||||
print(algorithm.cond(alpha))
|
||||
|
||||
if algorithm.cond(alpha) >= 1.0:
|
||||
return None
|
||||
|
||||
i = 0
|
||||
while i < max_iterations:
|
||||
i += 1
|
||||
|
||||
X_old = np.copy(X)
|
||||
X = np.add(np.matmul(alpha, X), beta)
|
||||
|
||||
if np.sum(np.abs(X - X_old)) < eps:
|
||||
break
|
||||
|
||||
for i, j in swaps:
|
||||
X[[i, j], :] = X[[j, i], :]
|
||||
|
||||
return X
|
||||
Reference in New Issue
Block a user