
РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ 

Задание: 
Для заданного варианта решить методом итераций систему уравнений 

A X B  . Для остановки процесса последовательных приближений 
использовать условие: сумма модулей приращений элементов вектора X на 
последнем шаге итераций меньше   0 001. . 

Используя метод Гаусса, вычислить определитель и число 
обусловленности матрицы A. 

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 

1. Для решения использовать систему MathCad  

2. Файл с решением высылается преподавателю 

3. Номер варианта соответствует последней цифре в номере зачетной книжки 

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ: 

Система линейных алгебраических уравнений в векторной форме имеет 
вид: 

                                               A X B  ,                                                        (1) 
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  - матрица системы,  

X x xT
n ( , ... , )1  - вектор неизвестных,  

B b bT
n ( , ... , )1   - вектор свободных коэффициентов.  

Если определитель  матрицы A не равен нулю (матрица – 
невырожденная), то существует единственное решение системы (1). 

Метод Гаусса для решения системы линейных алгебраических 
уравнений включает два этапа:  

1) преобразование матрицы А к верхней треугольной матрице; 
2) последовательное вычисление неизвестных xn,...,x1.  
Преобразование матрицы А сопровождается преобразованием столбца 

свободных коэффициентов, т.е. преобразуется расширенная матрица системы 
[A|B], включающая матрицу А и столбец B. Преобразование заключается в 
последовательном обнулении элементов матрицы А, расположенных ниже 
главной диагонали.  

Первый шаг первого этапа состоит в обнулении элементов первого 
столбца ai1, i=2,...,n; для этого первая строка матрицы, помноженная, 
соответственно, на коэффициенты ai1/a11, последовательно вычитается из 
последующих строк. При этом первая строка называется ведущей строкой, а 
элемент a11 - ведущим или главным элементом. Очевидно, что главный 
элемент не может быть равен нулю - следовательно, предварительно может 
потребоваться перестановка строк расширенной матрицы. 



Второй шаг - обнуление элементов второго столбца. На этом шаге 
главным элементом является элемент a22

1
 - преобразованный в процессе 

выполнения первого шага элемент a22 . Затем обнуляются элементы третьего 
столбца и т.д. 

На каждом шаге ведущий элемент не может быть равен нулю. Кроме того, 
с целью повышения точности вычислений целесообразно выбирать в качестве 
главного элемента наибольший по модулю элемент соответствующего 
столбца. Поэтому на каждом шаге обнулений предусматривается 
перестановка строк. Такая разновидность метода Гаусса называется 
алгоритмом с частичным выбором главного элемента.  

После завершения первого этапа расширенная матрица системы 
принимает вид [U|F], где U=[uij] - верхняя треугольная матрица - результат 
преобразования матрицы А, а F - результат преобразования столбца 
свободных коэффициентов.  

На втором этапе последовательно вычисляются: x f un n nn / ;  
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Пример 1.  Решим систему линейных уравнений, последовательно 
преобразовывая расширенную матрицу системы: 
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Вначале переставляем строки так, чтобы ведущий элемент был 
максимальным. Затем вычитаем элементы первой строки из второй, умножив 
их на коэффициент 5/10, и из третьей, умножив элементы первой строки на 
коэффициент 1/10. На этом заканчивается процесс обнуления элементов 
первого столбца. 

Процесс обнуления элементов второго столбца в данном случае сводится 
просто к перестановке строк. 

Второй этап состоит в последовательном вычислении: 
x3 4 4 1   / ,  x x2 310 5 2   / ,  x x x1 2 324 2 10 10 1     ( ) / . 

Для матрицы, приведенной к треугольному виду, вычисление 
определителя сводится к перемножению элементов, стоящих на главной 
диагонали; при этом следует учесть, что каждая перестановка строк меняет 
знак определителя. 

Число обусловленности матрицы А вычисляется по формуле: 
Cond(A)=||A||*||A-1||, 

где А-1 - обратная матрица,  
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 - норма матрицы. 

Число обусловленности характеризует близость матрицы к вырожденной 
матрице. Для единичной матрицы Cond(E)=1; для произвольной матрицы 
Cond(А) 1. Чем ближе матрица к вырожденной, тем больше число 
обусловленности. Если число обусловленности матрицы А - велико, то 



решение системы уравнений A X B   становится некорректной задачей. Если 
правая часть системы задана с погрешностью: B B   вместо B, - то 
погрешность решения удовлетворяет неравенству 

 X
X

Cond A
B
B
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где 
X Max x

i n
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 1  - норма вектора X.  
Для нахождения обратной матрицы следует n раз решить систему  
                                 ieXA  ,                 i=1,...,n,                                      (2)  

где ei - i-й столбец единичной матрицы. При решении систем уравнений (2) 
методом Гаусса целесообразно преобразовывать сразу расширенную матрицу 
[A|E], включающую исходную и единичную матрицы. При этом можно 
воспользоваться разновидностью метода Гаусса, называемой схемой 
Жордана. В соответствии со схемой Жордана исходная матрица преобразуется 
к единичной. Сначала матрица А приводится к диагональной: с помощью 
ведущих элементов каждого столбца производится обнуление элементов, 
расположенных как выше, так и ниже главной диагонали. В заключение 
каждая строка расширенной матрицы делится на соответствующий 
диагональный элемент. В результате преобразований формируется 
расширенная матрица [E|A-1], содержащая в правой части искомую обратную 
матрицу.  

При решении системы уравнений методом итераций исходная система 
A X B   приводится к эквивалентному виду: 

                                                 X C X F                                                   (3) 
и формируется итерационный процесс 

                                           X C X Fk k   1 ,                                               (4) 
где Xk - вектор, получаемый на k-м шаге процесса итераций. Более подробно 
итерационный процесс можно записать в виде: 
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Итерационный процесс сходится независимо от выбора вектора 
начального приближения X0, если выполнено условие: 
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Приведение исходной системы к нужному виду может быть произведено 

следующим образом. Решим i-е уравнение системы  
ininiiii bxaxaxa  ......11  

относительно xi: 
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В результате получаем систему вида (3), где элементы матрицы C равны 
cij=-aij/aii, если j i , и cii=0, а элементы вектора F равны fi=bi/aii, для всех 



i=1,...,n. При этом для выполнения условия сходимости (6) достаточно, чтобы 
в матрице А диагональные элементы были преобладающими: 
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Преобладания диагональных элементов можно добиться с помощью 
элементарных операций над строками исходной матрицы: перестановкой 
строк и суммированием строк, взятых с подходящими коэффициентами. 

Пример 2. Решим систему линейных уравнений методом итераций, 
предварительно преобразовав уравнения так, чтобы диагональные элементы 
матрицы А были преобладающими: 
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На первом шаге переставляем вторую и третью строки матрицы, на 
втором - прибавляем к третьей строке первую строку с весовым 
коэффициентом 2 и вторую строку с коэффициентом -1.  Записываем 
итерационный процесс: 

  x x xk k k
1

1
2 34 33 8    ( ) / ,    x xk k

2
1

32 58 7   ( ) / ,    x xk k
3

1
12 26 6   ( ) / . 

Результаты расчетов приведены в таблице: 
k 0 1 2 ... 7 8 
xk1  4.125 7.81 7.458 ... 7.997 7.998 
xk2  8.286 7.238 7.631 ... 7.997 7.999 
xk3  -3.667 -2.292 -1.063 ... -1.003 -1.001 

Точное решение системы равно X T = (8, 8, -1). 
  



ВАРИАНТЫ ЗАДАЧ 

 

 

 



 

 
 
 


